Defects in endoplasmic reticulum-associated degradation (ERAD) increase selenate sensitivity in Arabidopsis.

نویسنده

  • Doug Van Hoewyk
چکیده

Stress can impair protein folding in the endoplasmic reticulum (ER). Minimizing the accumulation of misfolded proteins in the ER is achieved by ER-associated degradation (ERAD), which involves the retrograde transport and proteasomal removal of aberrant proteins. Recently, the proteasome has been implicated in a selenium stress response. However, it remains unknown if selenium causes ER stress in plants similar to animals, and if ERAD is associated with optimal selenium tolerance. This deficiency was addressed by monitoring selenate-treated Arabidopsis plants with mutations in HRD1 and SeL1L, participants of ERAD. hrd1a/hrd1b and sel1l mutants treated with selenate demonstrate decreased tolerance and ER stress, as judged by BiP2 accumulation. The data indicate that optimal plant growth during selenate stress requires ERAD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EBS7 is a plant-specific component of a highly conserved endoplasmic reticulum-associated degradation system in Arabidopsis.

Endoplasmic reticulum (ER)-associated degradation (ERAD) is an essential part of an ER-localized protein quality-control system for eliminating terminally misfolded proteins. Recent studies have demonstrated that the ERAD machinery is conserved among yeast, animals, and plants; however, it remains unknown if the plant ERAD system involves plant-specific components. Here we report that the Arabi...

متن کامل

Conserved endoplasmic reticulum-associated degradation system to eliminate mutated receptor-like kinases in Arabidopsis.

Endoplasmic reticulum (ER)-associated degradation (ERAD) is an integral part of the ER quality-control system that removes toxic misfolded proteins via ubiquitin/proteasome-mediated degradation. Most of our knowledge on ERAD comes from biochemical and genetic studies in yeast and mammalian cells. Although ERAD is known to operate in plant cells, little is known about its molecular components an...

متن کامل

Endoplasmic reticulum-mediated protein quality control in Arabidopsis

A correct three-dimensional structure is crucial for the physiological functions of a protein, yet the folding of proteins to acquire native conformation is a fundamentally error-prone process. Eukaryotic organisms have evolved a highly conserved endoplasmic reticulum-mediated protein quality control (ERQC) mechanism to monitor folding processes of secretory and membrane proteins, allowing expo...

متن کامل

TorsinA participates in endoplasmic reticulum-associated degradation

TorsinA is an AAA+ ATPase located within the lumen of the endoplasmic reticulum and nuclear envelope, with a mutant form causing early onset torsion dystonia (DYT1). Here we report a new function for torsinA in endoplasmic reticulum-associated degradation (ERAD). Retro-translocation and proteosomal degradation of a mutant cystic fibrosis transmembrane conductance regulator (CFTRΔF508) was inhib...

متن کامل

Arabidopsis Class I α-Mannosidases MNS4 and MNS5 Are Involved in Endoplasmic Reticulum-Associated Degradation of Misfolded Glycoproteins.

To ensure that aberrantly folded proteins are cleared from the endoplasmic reticulum (ER), all eukaryotic cells possess a mechanism known as endoplasmic reticulum-associated degradation (ERAD). Many secretory proteins are N-glycosylated, and despite some recent progress, little is known about the mechanism that selects misfolded glycoproteins for degradation in plants. Here, we investigated the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant signaling & behavior

دوره   شماره 

صفحات  -

تاریخ انتشار 2016